MTH 301: Group Theory

Practice Assignment III

- 1. Show a finite group G cannot be simple, if:
 - (a) $|G| = p^k$, where p is a prime and k > 1.
 - (b) $|G| = 2p^k$, where p is a prime and $k \ge 1$.
 - (c) |G| = pq, where the p and q are distinct primes.
- 2. Let |G| = pq, where p and q are distinct primes. Then show that

$$G \cong H \ltimes K,$$

where $H \in \text{Syl}_p(G)$ and $K \in \text{Syl}_q(G)$. [Hint: Use Problem 4 from Practice Assignment III.]

- 3. Show that, up to isomorphism, there is a unique non-abelian group of order 10. nd ord
- 4. Establish the non-simplicity of all groups of non-prime order less than 60.
- 5. Show that if |G| = 60 and $n_5 > 1$, then G is simple. [Hint: Assume on the contrary that G has a proper normal subgroup H. Then $n_5 = 6$ and for any Sylow 5-subgroup P, $|N_G(P)| = 10$. Now you will need to use the non-simplicity of groups of order 15, 20 and 30, and argue.]
- 6. Show that A_5 is simple. [Hint: Show that A_5 has at least two distinct Sylow 5-subgroups.]
- 7. Compute $\operatorname{Aut}(G)$ for the following groups.
 - (a) $G = \mathbb{Z}_2 \times \mathbb{Z}_2$.
 - (b) $G = D_8$.
 - (c) $G = Q_8$.
- 8. Prove Q_8 is an extension of \mathbb{Z}_4 by \mathbb{Z}_2 .
- 9. Does there exist group of order 12 isomorphic to a non-trivial semi-direct product of the form $(\mathbb{Z}_2 \times \mathbb{Z}_2) \ltimes \mathbb{Z}_3$ or $\mathbb{Z}_3 \ltimes (\mathbb{Z}_2 \times \mathbb{Z}_2)$.
- 10. If P is a Sylow p-subgroup and Q a p-subgroup of a finite group G, then show that

$$N_G(P) \cap Q = P \cap Q.$$

[Hint: It suffices to show that $N_G(P) \cap Q \leq P$.]